Papers
Topics
Authors
Recent
Search
2000 character limit reached

Things Bayes can't do

Published 26 Oct 2016 in cs.LG, math.ST, stat.ML, and stat.TH | (1610.08239v2)

Abstract: The problem of forecasting conditional probabilities of the next event given the past is considered in a general probabilistic setting. Given an arbitrary (large, uncountable) set C of predictors, we would like to construct a single predictor that performs asymptotically as well as the best predictor in C, on any data. Here we show that there are sets C for which such predictors exist, but none of them is a Bayesian predictor with a prior concentrated on C. In other words, there is a predictor with sublinear regret, but every Bayesian predictor must have a linear regret. This negative finding is in sharp contrast with previous results that establish the opposite for the case when one of the predictors in $C$ achieves asymptotically vanishing error. In such a case, if there is a predictor that achieves asymptotically vanishing error for any measure in C, then there is a Bayesian predictor that also has this property, and whose prior is concentrated on (a countable subset of) C.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.