Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-time optimality of Bayesian predictors (1812.08292v2)

Published 20 Dec 2018 in cs.LG, cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: The problem of sequential probability forecasting is considered in the most general setting: a model set C is given, and it is required to predict as well as possible if any of the measures (environments) in C is chosen to generate the data. No assumptions whatsoever are made on the model class C, in particular, no independence or mixing assumptions; C may not be measurable; there may be no predictor whose loss is sublinear, etc. It is shown that the cumulative loss of any possible predictor can be matched by that of a Bayesian predictor whose prior is discrete and is concentrated on C, up to an additive term of order $\log n$, where $n$ is the time step. The bound holds for every $n$ and every measure in C. This is the first non-asymptotic result of this kind. In addition, a non-matching lower bound is established: it goes to infinity with $n$ but may do so arbitrarily slow.

Summary

We haven't generated a summary for this paper yet.