Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wind ramp event prediction with parallelized Gradient Boosted Regression Trees (1610.05009v1)

Published 17 Oct 2016 in cs.LG and cs.AI

Abstract: Accurate prediction of wind ramp events is critical for ensuring the reliability and stability of the power systems with high penetration of wind energy. This paper proposes a classification based approach for estimating the future class of wind ramp event based on certain thresholds. A parallelized gradient boosted regression tree based technique has been proposed to accurately classify the normal as well as rare extreme wind power ramp events. The model has been validated using wind power data obtained from the National Renewable Energy Laboratory database. Performance comparison with several benchmark techniques indicates the superiority of the proposed technique in terms of superior classification accuracy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.