Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Deep Reinforcement Learning (1610.02707v1)

Published 9 Oct 2016 in cs.AI

Abstract: We propose Deep Optimistic Linear Support Learning (DOL) to solve high-dimensional multi-objective decision problems where the relative importances of the objectives are not known a priori. Using features from the high-dimensional inputs, DOL computes the convex coverage set containing all potential optimal solutions of the convex combinations of the objectives. To our knowledge, this is the first time that deep reinforcement learning has succeeded in learning multi-objective policies. In addition, we provide a testbed with two experiments to be used as a benchmark for deep multi-objective reinforcement learning.

Citations (145)

Summary

We haven't generated a summary for this paper yet.