Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey and Measurement Study of GPU DVFS on Energy Conservation (1610.01784v1)

Published 6 Oct 2016 in cs.DC

Abstract: Energy efficiency has become one of the top design criteria for current computing systems. The dynamic voltage and frequency scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the application performance and power consumption, and furthermore, on energy conservation. We survey the state-of-the-art GPU DVFS characterizations, and then summarize recent research works on GPU power and performance models. We also conduct real GPU DVFS experiments on NVIDIA Fermi and Maxwell GPUs. According to our experimental results, GPU DVFS has significant potential for energy saving. The effect of scaling core voltage/frequency and memory voltage/frequency depends on not only the GPU architectures, but also the characteristic of GPU applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xinxin Mei (3 papers)
  2. Qiang Wang (271 papers)
  3. Xiaowen Chu (108 papers)
Citations (39)