Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning with Finite Memory for Machine Type Communication (1610.01723v1)

Published 6 Oct 2016 in cs.IT and math.IT

Abstract: Machine-type devices (MTDs) will lie at the heart of the Internet of Things (IoT) system. A key challenge in such a system is sharing network resources between small MTDs, which have limited memory and computational capabilities. In this paper, a novel learning \emph{with finite memory} framework is proposed to enable MTDs to effectively learn about each others message state, so as to properly adapt their transmission parameters. In particular, an IoT system in which MTDs can transmit both delay tolerant, periodic messages and critical alarm messages is studied. For this model, the characterization of the exponentially growing delay for critical alarm messages and the convergence of the proposed learning framework in an IoT are analyzed. Simulation results show that the delay of critical alarm messages is significantly reduced up to $94\%$ with very minimal memory requirements. The results also show that the proposed learning with finite memory framework is very effective in mitigating the limiting factors of learning that prevent proper learning procedures.

Citations (9)

Summary

We haven't generated a summary for this paper yet.