Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Protein Dynamics with Metastable Switching Systems (1610.01642v1)

Published 5 Oct 2016 in stat.ML and cs.LG

Abstract: We introduce a machine learning approach for extracting fine-grained representations of protein evolution from molecular dynamics datasets. Metastable switching linear dynamical systems extend standard switching models with a physically-inspired stability constraint. This constraint enables the learning of nuanced representations of protein dynamics that closely match physical reality. We derive an EM algorithm for learning, where the E-step extends the forward-backward algorithm for HMMs and the M-step requires the solution of large biconvex optimization problems. We construct an approximate semidefinite program solver based on the Frank-Wolfe algorithm and use it to solve the M-step. We apply our EM algorithm to learn accurate dynamics from large simulation datasets for the opioid peptide met-enkephalin and the proto-oncogene Src-kinase. Our learned models demonstrate significant improvements in temporal coherence over HMMs and standard switching models for met-enkephalin, and sample transition paths (possibly useful in rational drug design) for Src-kinase.

Citations (1)

Summary

We haven't generated a summary for this paper yet.