Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Shidlovsky's multiplicity estimate and Irrationality of zeta values (1609.09770v1)

Published 30 Sep 2016 in math.NT

Abstract: In this paper we follow the approach of Bertrand-Beukers (and of later work of Bertrand), based on differential Galois theory, to prove a very general version of Shidlovsky's lemma that applies to Pad{\'e} approximation problems at several points, both at functional and numerical levels (i.e., before and after evaluating at a specific point). This allows us to obtain a new proof of the Ball-Rivoal theorem on irrationality of infinitely many values of Riemann zeta function at odd integers, inspired by the proof of the Siegel-Shidlovsky theorem on values of E-functions: Shidlovsky's lemma is used to replace Nesterenko's linear independence criterion with Siegel's, so that no lower bound is needed on the linear forms in zeta values. The same strategy provides a new proof, and a refinement, of Nishimoto's theorem on values of L-functions of Dirichlet characters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.