2000 character limit reached
Many odd zeta values are irrational (1803.08905v2)
Published 23 Mar 2018 in math.NT, math.AG, math.CA, and math.CO
Abstract: Building upon ideas of the second and third authors, we prove that at least $2{(1-\varepsilon)\frac{\log s}{\log\log s}}$ values of the Riemann zeta function at odd integers between 3 and $s$ are irrational, where $\varepsilon$ is any positive real number and $s$ is large enough in terms of $\varepsilon$. This lower bound is asymptotically larger than any power of $\log s$; it improves on the bound $\frac{1-\varepsilon}{1+\log2}\log s$ that follows from the Ball--Rivoal theorem. The proof is based on construction of several linear forms in odd zeta values with related coefficients.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.