Papers
Topics
Authors
Recent
Search
2000 character limit reached

Geometry of mutation classes of rank $3$ quivers

Published 28 Sep 2016 in math.CO, math.MG, and math.RA | (1609.08828v3)

Abstract: We present a geometric realization for all mutation classes of quivers of rank $3$ with real weights. This realization is via linear reflection groups for acyclic mutation classes and via groups generated by $\pi$-rotations for the cyclic ones. The geometric behavior of the model turns out to be controlled by the Markov constant $p2+q2+r2-pqr$, where $p,q,r$ are the elements of exchange matrix. We also classify skew-symmetric mutation-finite real $3\times 3$ matrices and explore the structure of acyclic representatives in finite and infinite mutation classes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.