Papers
Topics
Authors
Recent
2000 character limit reached

Learning Genomic Representations to Predict Clinical Outcomes in Cancer

Published 27 Sep 2016 in cs.NE and cs.LG | (1609.08663v1)

Abstract: Genomics are rapidly transforming medical practice and basic biomedical research, providing insights into disease mechanisms and improving therapeutic strategies, particularly in cancer. The ability to predict the future course of a patient's disease from high-dimensional genomic profiling will be essential in realizing the promise of genomic medicine, but presents significant challenges for state-of-the-art survival analysis methods. In this abstract we present an investigation in learning genomic representations with neural networks to predict patient survival in cancer. We demonstrate the advantages of this approach over existing survival analysis methods using brain tumor data.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.