Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The BigDAWG Polystore System and Architecture (1609.07548v1)

Published 24 Sep 2016 in cs.DB

Abstract: Organizations are often faced with the challenge of providing data management solutions for large, heterogenous datasets that may have different underlying data and programming models. For example, a medical dataset may have unstructured text, relational data, time series waveforms and imagery. Trying to fit such datasets in a single data management system can have adverse performance and efficiency effects. As a part of the Intel Science and Technology Center on Big Data, we are developing a polystore system designed for such problems. BigDAWG (short for the Big Data Analytics Working Group) is a polystore system designed to work on complex problems that naturally span across different processing or storage engines. BigDAWG provides an architecture that supports diverse database systems working with different data models, support for the competing notions of location transparency and semantic completeness via islands and a middleware that provides a uniform multi--island interface. Initial results from a prototype of the BigDAWG system applied to a medical dataset validate polystore concepts. In this article, we will describe polystore databases, the current BigDAWG architecture and its application on the MIMIC II medical dataset, initial performance results and our future development plans.

Citations (97)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.