Papers
Topics
Authors
Recent
2000 character limit reached

Compressed Learning for Tactile Object Classification (1609.07542v1)

Published 24 Sep 2016 in cs.RO

Abstract: The potential of large tactile arrays to improve robot perception for safe operation in human-dominated environments and of high-resolution tactile arrays to enable human-level dexterous manipulation is well accepted. However, the increase in the number of tactile sensing elements introduces challenges including wiring complexity, power consumption, and data processing. To help address these challenges, we previously developed a tactile sensing technique based compressed sensing that reduces hardware complexity and data transmission, while allowing accurate reconstruction of the full-resolution signal. In this paper, we apply tactile compressed sensing to the problem of object classification. Specifically, we perform object classification on the compressed tactile data. We evaluate our method using BubbleTouch, our tactile array simulator. Our results show our approach achieves high classification accuracy, even with compression factors up to 64.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.