Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The $\mathfrak{sl}_3$ colored Jones polynomials for $2$-bridge links (1609.07289v2)

Published 23 Sep 2016 in math.GT

Abstract: Kuperberg introduced web spaces for some Lie algebras which are generalizations of the Kauffman bracket skein module on a disk with marked points. We derive some formulas for $A_1$ and $A_2$ clasped web spaces by graphical calculus using skein theory. These formulas are colored version of skein relations, twist formulas and bubble skein expansion formulas. We calculate the $\mathfrak{sl}_2$ and $\mathfrak{sl}_3$ colored Jones polynomials of $2$-bridge knots and links explicitly using twist formulas.

Summary

We haven't generated a summary for this paper yet.