Papers
Topics
Authors
Recent
2000 character limit reached

Leading Impulse Response Identification via the Weighted Elastic Net Criterion

Published 22 Sep 2016 in cs.SY | (1609.07029v1)

Abstract: This paper deals with the problem of finding a low-complexity estimate of the impulse response of a linear time-invariant discrete-time dynamic system from noise-corrupted input-output data. To this purpose, we introduce an identification criterion formed by the average (over the input perturbations) of a standard prediction error cost, plus a weighted l1 regularization term which promotes sparse solutions. While it is well known that such criteria do provide solutions with many zeros, a critical issue in our identification context is where these zeros are located, since sensible low-order models should be zero in the tail of the impulse response. The flavor of the key results in this paper is that, under quite standard assumptions (such as i.i.d. input and noise sequences and system stability), the estimate of the impulse response resulting from the proposed criterion is indeed identically zero from a certain time index (named the leading order) onwards, with arbitrarily high probability, for a sufficiently large data cardinality. Numerical experiments are reported that support the theoretical results, and comparisons are made with some other state-of-the-art methodologies.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.