Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global Versus Local Computations: Fast Computing with Identifiers

Published 21 Sep 2016 in cs.CC and cs.DC | (1609.06508v2)

Abstract: This paper studies what can be computed by using probabilistic local interactions with agents with a very restricted power in polylogarithmic parallel time. It is known that if agents are only finite state (corresponding to the Population Protocol model by Angluin et al.), then only semilinear predicates over the global input can be computed. In fact, if the population starts with a unique leader, these predicates can even be computed in a polylogarithmic parallel time. If identifiers are added (corresponding to the Community Protocol model by Guerraoui and Ruppert), then more global predicates over the input multiset can be computed. Local predicates over the input sorted according to the identifiers can also be computed, as long as the identifiers are ordered. The time of some of those predicates might require exponential parallel time. In this paper, we consider what can be computed with Community Protocol in a polylogarithmic number of parallel interactions. We introduce the class CPPL corresponding to protocols that use $O(n\logk n)$, for some k, expected interactions to compute their predicates, or equivalently a polylogarithmic number of parallel expected interactions. We provide some computable protocols, some boundaries of the class, using the fact that the population can compute its size. We also prove two impossibility results providing some arguments showing that local computations are no longer easy: the population does not have the time to compare a linear number of consecutive identifiers. The Linearly Local languages, such that the rational language $(ab)*$, are not computable.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.