Papers
Topics
Authors
Recent
2000 character limit reached

Message complexity of population protocols

Published 20 Mar 2020 in cs.DC and cs.CC | (2003.09532v3)

Abstract: The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of $\textit{message complexity}$ for population protocols, where the state of an agent is divided into an externally-visible $\textit{message}$ and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of $O(1)$ message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states $s(n)$: If $s(n) = o(n)$ then the protocol computes semilinear predicates (unlike the original model, which can compute non-semilinear predicates with $s(n) = O(\log n)$), and otherwise it computes a predicate decidable by a nondeterministic $O(n \log s(n))$-space-bounded Turing machine. We then introduce novel $O(\mathrm{polylog}(n))$ expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only $\textit{1-bit}$ messages.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.