Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Negative Results for Software Effort Estimation (1609.05563v3)

Published 18 Sep 2016 in cs.SE

Abstract: Context:More than half the literature on software effort estimation (SEE) focuses on comparisons of new estimation methods. Surprisingly, there are no studies comparing state of the art latest methods with decades-old approaches. Objective:To check if new SEE methods generated better estimates than older methods. Method: Firstly, collect effort estimation methods ranging from "classical" COCOMO (parametric estimation over a pre-determined set of attributes) to "modern" (reasoning via analogy using spectral-based clustering plus instance and feature selection, and a recent "baseline method" proposed in ACM Transactions on Software Engineering).Secondly, catalog the list of objections that lead to the development of post-COCOMO estimation methods.Thirdly, characterize each of those objections as a comparison between newer and older estimation methods.Fourthly, using four COCOMO-style data sets (from 1991, 2000, 2005, 2010) and run those comparisons experiments.Fifthly, compare the performance of the different estimators using a Scott-Knott procedure using (i) the A12 effect size to rule out "small" differences and (ii) a 99% confident bootstrap procedure to check for statistically different groupings of treatments). Results: The major negative results of this paper are that for the COCOMO data sets, nothing we studied did any better than Boehm's original procedure. Conclusions: When COCOMO-style attributes are available, we strongly recommend (i) using that data and (ii) use COCOMO to generate predictions. We say this since the experiments of this paper show that, at least for effort estimation,how data is collected is more important than what learner is applied to that data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tim Menzies (128 papers)
  2. Ye Yang (48 papers)
  3. George Mathew (14 papers)
  4. Barry Boehm (8 papers)
  5. Jairus Hihn (2 papers)
Citations (68)