Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RFM-SLAM: Exploiting Relative Feature Measurements to Separate Orientation and Position Estimation in SLAM (1609.05235v1)

Published 16 Sep 2016 in cs.RO and cs.SY

Abstract: The SLAM problem is known to have a special property that when robot orientation is known, estimating the history of robot poses and feature locations can be posed as a standard linear least squares problem. In this work, we develop a SLAM framework that uses relative feature-to-feature measurements to exploit this structural property of SLAM. Relative feature measurements are used to pose a linear estimation problem for pose-to-pose orientation constraints. This is followed by solving an iterative non-linear on-manifold optimization problem to compute the maximum likelihood estimate for robot orientation given relative rotation constraints. Once the robot orientation is computed, we solve a linear problem for robot position and map estimation. Our approach reduces the computational burden of non-linear optimization by posing a smaller optimization problem as compared to standard graph-based methods for feature-based SLAM. Further, empirical results show our method avoids catastrophic failures that arise in existing methods due to using odometery as an initial guess for non-linear optimization, while its accuracy degrades gracefully as sensor noise is increased. We demonstrate our method through extensive simulations and comparisons with an existing state-of-the-art solver.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Saurav Agarwal (15 papers)
  2. Vikram Shree (7 papers)
  3. Suman Chakravorty (40 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.