Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gray-box inference for structured Gaussian process models (1609.04289v1)

Published 14 Sep 2016 in stat.ML

Abstract: We develop an automated variational inference method for Bayesian structured prediction problems with Gaussian process (GP) priors and linear-chain likelihoods. Our approach does not need to know the details of the structured likelihood model and can scale up to a large number of observations. Furthermore, we show that the required expected likelihood term and its gradients in the variational objective (ELBO) can be estimated efficiently by using expectations over very low-dimensional Gaussian distributions. Optimization of the ELBO is fully parallelizable over sequences and amenable to stochastic optimization, which we use along with control variate techniques and state-of-the-art incremental optimization to make our framework useful in practice. Results on a set of natural language processing tasks show that our method can be as good as (and sometimes better than) hard-coded approaches including SVM-struct and CRFs, and overcomes the scalability limitations of previous inference algorithms based on sampling. Overall, this is a fundamental step to developing automated inference methods for Bayesian structured prediction.

Citations (4)

Summary

We haven't generated a summary for this paper yet.