Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Almost Equivalence by Asymptotic Probabilities for Regular Languages and Its Computational Complexities (1609.04101v1)

Published 14 Sep 2016 in cs.FL and cs.CC

Abstract: We introduce p-equivalence by asymptotic probabilities, which is a weak almost-equivalence based on zero-one laws in finite model theory. In this paper, we consider the computational complexities of p-equivalence problems for regular languages and provide the following details. First, we give an robustness of p-equivalence and a logical characterization for p-equivalence. The characterization is useful to generate some algorithms for p-equivalence problems by coupling with standard results from descriptive complexity. Second, we give the computational complexities for the p-equivalence problems by the logical characterization. The computational complexities are the same as for the (fully) equivalence problems. Finally, we apply the proofs for p-equivalence to some generalized equivalences.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.