Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotic analysis of boundary layers in a repulsive particle system

Published 12 Sep 2016 in math.AP | (1609.03236v1)

Abstract: This paper studies the boundary behaviour at mechanical equilibrium at the ends of a finite interval of a class of systems of interacting particles with monotone decreasing repulsive force. Our setting covers pile-ups of dislocations, dislocation dipoles and dislocation walls. The main challenge is to control the nonlocal nature of the pairwise particle interactions. Using matched asymptotic expansions for the particle positions and rigorous development of an appropriate energy via Gamma-convergence, we obtain the equilibrium equation solved by the boundary layer correction, associate an energy with an appropriate scaling to this correction, and provide decay rates into the bulk.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.