Papers
Topics
Authors
Recent
2000 character limit reached

Rectifier Neural Network with a Dual-Pathway Architecture for Image Denoising

Published 10 Sep 2016 in cs.CV | (1609.03024v3)

Abstract: Recently deep neural networks based on tanh activation function have shown their impressive power in image denoising. In this letter, we try to use rectifier function instead of tanh and propose a dual-pathway rectifier neural network by combining two rectifier neurons with reversed input and output weights in the same hidden layer. We drive the equivalent activation function and compare it to some typical activation functions for image denoising under the same network architecture. The experimental results show that our model achieves superior performances faster especially when the noise is small.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.