Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PLU: The Piecewise Linear Unit Activation Function (1809.09534v1)

Published 3 Sep 2018 in cs.NE

Abstract: Successive linear transforms followed by nonlinear "activation" functions can approximate nonlinear functions to arbitrary precision given sufficient layers. The number of necessary layers is dependent on, in part, by the nature of the activation function. The hyperbolic tangent (tanh) has been a favorable choice as an activation until the networks grew deeper and the vanishing gradients posed a hindrance during training. For this reason the Rectified Linear Unit (ReLU) defined by max(0, x) has become the prevailing activation function in deep neural networks. Unlike the tanh function which is smooth, the ReLU yields networks that are piecewise linear functions with a limited number of facets. This paper presents a new activation function, the Piecewise Linear Unit (PLU) that is a hybrid of tanh and ReLU and shown to outperform the ReLU on a variety of tasks while avoiding the vanishing gradients issue of the tanh.

Citations (31)

Summary

We haven't generated a summary for this paper yet.