Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient Search Tool for an Anti-Money Laundering Application of an Multi-national Bank's Dataset (1609.02031v2)

Published 4 Sep 2016 in cs.DB and cs.CE

Abstract: Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nations. This criminal activity is becoming more and more sophisticated and seems to have moved from the clichy of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. In AML, the customer identification is an important task which helps AML experts to monitor customer habits: some being customer domicile, transactions that they are involved in etc. However, simple query tools provided by current DBMS as well as naive approaches in customer searching may produce incorrect and ambiguous results and their processing time is also very high due to the complexity of the database system architecture. In this paper, we present a new approach for identifying customers registered in an investment bank. This approach is developed as a tool that allows AML experts to quickly identify customers who are managed independently across separate databases. It is tested on real-world datasets, which are real and large financial datasets. Some preliminary experimental results show that this new approach is efficient and effective.

Citations (16)

Summary

We haven't generated a summary for this paper yet.