A new approach to representations of $3$-Lie algebras and abelian extensions
Abstract: In this paper, we introduce the notion of generalized representation of a $3$-Lie algebra, by which we obtain a generalized semidirect product $3$-Lie algebra. Moreover, we develop the corresponding cohomology theory. Various examples of generalized representations of 3-Lie algebras and computation of 2-cocycles of the new cohomology are provided. Also, we show that a split abelian extension of a 3-Lie algebra is isomorphic to a generalized semidirect product $3$-Lie algebra. Furthermore, we describe general abelian extensions of 3-Lie algebras using Maurer-Cartan elements.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.