Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes (1609.01228v1)

Published 5 Sep 2016 in cs.CV

Abstract: Deep learning is the current bet for image classification. Its greed for huge amounts of annotated data limits its usage in medical imaging context. In this scenario transfer learning appears as a prominent solution. In this report we aim to clarify how transfer learning schemes may influence classification results. We are particularly focused in the automated melanoma screening problem, a case of medical imaging in which transfer learning is still not widely used. We explored transfer with and without fine-tuning, sequential transfers and usage of pre-trained models in general and specific datasets. Although some issues remain open, our findings may drive future researches.

Citations (43)

Summary

We haven't generated a summary for this paper yet.