Intrinsic mirror symmetry and punctured Gromov-Witten invariants (1609.00624v3)
Abstract: This contribution to the 2015 AMS Summer Institute in Algebraic Geometry (Salt Lake City) announces a general mirror construction. This construction applies to log Calabi-Yau pairs (X,D) with maximal boundary D or to maximally unipotent degenerations of Calabi-Yau manifolds. The new ingredient is a notion of "punctured Gromov-Witten invariant", currently in progress with Abramovich and Chen. The mirror to a pair (X,D) is constructed as the spectrum of a ring defined using the punctured invariants of (X,D). An analogous construction leads to mirrors of Calabi-Yau manifolds. This can be viewed as a generalization of constructions developed jointly with Hacking and Keel in the case of log CY surfaces and K3 surfaces.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.