Papers
Topics
Authors
Recent
Search
2000 character limit reached

Short closed geodesics with self-intersections

Published 1 Sep 2016 in math.GT and math.DG | (1609.00217v1)

Abstract: Our main point of focus is the set of closed geodesics on hyperbolic surfaces. For any fixed integer $k$, we are interested in the set of all closed geodesics with at least $k$ (but possibly more) self-intersections. Among these, we consider those of minimal length and investigate their self-intersection numbers. We prove that their intersection numbers are upper bounded by a universal linear function in $k$ (which holds for any hyperbolic surface). Moreover, in the presence of cusps, we get bounds which imply that the self-intersection numbers behave asymptotically like $k$ for growing $k$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.