Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weakly Supervised PatchNets: Describing and Aggregating Local Patches for Scene Recognition

Published 1 Sep 2016 in cs.CV | (1609.00153v2)

Abstract: Traditional feature encoding scheme (e.g., Fisher vector) with local descriptors (e.g., SIFT) and recent convolutional neural networks (CNNs) are two classes of successful methods for image recognition. In this paper, we propose a hybrid representation, which leverages the discriminative capacity of CNNs and the simplicity of descriptor encoding schema for image recognition, with a focus on scene recognition. To this end, we make three main contributions from the following aspects. First, we propose a patch-level and end-to-end architecture to model the appearance of local patches, called {\em PatchNet}. PatchNet is essentially a customized network trained in a weakly supervised manner, which uses the image-level supervision to guide the patch-level feature extraction. Second, we present a hybrid visual representation, called {\em VSAD}, by utilizing the robust feature representations of PatchNet to describe local patches and exploiting the semantic probabilities of PatchNet to aggregate these local patches into a global representation. Third, based on the proposed VSAD representation, we propose a new state-of-the-art scene recognition approach, which achieves an excellent performance on two standard benchmarks: MIT Indoor67 (86.2\%) and SUN397 (73.0\%).

Citations (79)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.