Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Infinity category theory from scratch (1608.05314v2)

Published 18 Aug 2016 in math.CT and math.AT

Abstract: We use the terms "$\infty$-categories" and "$\infty$-functors" to mean the objects and morphisms in an "$\infty$-cosmos." Quasi-categories, Segal categories, complete Segal spaces, naturally marked simplicial sets, iterated complete Segal spaces, $\theta_n$-spaces, and fibered versions of each of these are all $\infty$-categories in this sense. We show that the basic category theory of $\infty$-categories and $\infty$-functors can be developed from the axioms of an $\infty$-cosmos; indeed, most of the work is internal to a strict 2-category of $\infty$-categories, $\infty$-functors, and natural transformations. In the $\infty$-cosmos of quasi-categories, we recapture precisely the same theory developed by Joyal and Lurie, although in most cases our definitions, which are 2-categorical rather than combinatorial in nature, present a new incarnation of the standard concepts. In the first lecture, we define an $\infty$-cosmos and introduce its "homotopy 2-category," using formal category theory to define and study equivalences and adjunctions between $\infty$-categories. In the second lecture, we study (co)limits of diagrams taking values in an $\infty$-category and the relationship between (co)limits and adjunctions. In the third lecture, we introduce comma $\infty$-categories, which are used to encode the universal properties of (co)limits and adjointness and prove "model independence" results. In the fourth lecture, we introduce (co)cartesian fibrations, describe the calculus of "modules" between $\infty$-categories, and use this framework to prove the Yoneda lemma and develop the theory of pointwise Kan extensions of $\infty$-functors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube