Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the construction of limits and colimits in $\infty$-categories (1808.09835v4)

Published 29 Aug 2018 in math.CT and math.AT

Abstract: In previous work, we introduce an axiomatic framework within which to prove theorems about many varieties of infinite-dimensional categories simultaneously. In this paper, we establish criteria implying that an $\infty$-category - for instance, a quasi-category, a complete Segal space, or a Segal category - is complete and cocomplete, admitting limits and colimits indexed by any small simplicial set. Our strategy is to build (co)limits of diagrams indexed by a simplicial set inductively from (co)limits of restricted diagrams indexed by the pieces of its skeletal filtration. We show directly that the modules that express the universal properties of (co)limits of diagrams of these shapes are reconstructable as limits of the modules that express the universal properties of (co)limits of the restricted diagrams. We also prove that the Yoneda embedding preserves and reflects limits in a suitable sense, and deduce our main theorems as a consequence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.