Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Latent Local Conversation Modes for Predicting Community Endorsement in Online Discussions (1608.04808v2)

Published 16 Aug 2016 in cs.SI and cs.CL

Abstract: Many social media platforms offer a mechanism for readers to react to comments, both positively and negatively, which in aggregate can be thought of as community endorsement. This paper addresses the problem of predicting community endorsement in online discussions, leveraging both the participant response structure and the text of the comment. The different types of features are integrated in a neural network that uses a novel architecture to learn latent modes of discussion structure that perform as well as deep neural networks but are more interpretable. In addition, the latent modes can be used to weight text features thereby improving prediction accuracy.

Citations (12)

Summary

We haven't generated a summary for this paper yet.