Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Revisiting Causality Inference in Memory-less Transition Networks (1608.02658v3)

Published 8 Aug 2016 in stat.ML, cs.AI, nlin.CD, and physics.data-an

Abstract: Several methods exist to infer causal networks from massive volumes of observational data. However, almost all existing methods require a considerable length of time series data to capture cause and effect relationships. In contrast, memory-less transition networks or Markov Chain data, which refers to one-step transitions to and from an event, have not been explored for causality inference even though such data is widely available. We find that causal network can be inferred from characteristics of four unique distribution zones around each event. We call this Composition of Transitions and show that cause, effect, and random events exhibit different behavior in their compositions. We applied machine learning models to learn these different behaviors and to infer causality. We name this new method Causality Inference using Composition of Transitions (CICT). To evaluate CICT, we used an administrative inpatient healthcare dataset to set up a network of patients transitions between different diagnoses. We show that CICT is highly accurate in inferring whether the transition between a pair of events is causal or random and performs well in identifying the direction of causality in a bi-directional association.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.