Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lois locales de la fonction $ω$ dans presque tous les petits intervalles (1607.08666v1)

Published 28 Jul 2016 in math.NT

Abstract: For $k\geq 1$ an integer and $x\geq 1$ a real number, let $\pi_k(x)$ be the number of integers smaller than $x$ having exactly $k$ distinct prime divisors. Building on recent work of Matom\"aki and Radziwi\l\l, we investigate the asymptotic behavior of $\pi_k(x+h)-\pi_k(x)$ for almost all $x$, when $h$ is very small. We obtain optimal results for $k\asymp\log_2 x$ and close to optimal results for $5\leq k\leq\log_2 x$. Our method also applies to $y$-friable integers in almost all intervals $[x,x+h]$ when $\frac{\log x}{\log y}\leq (\log x){1/6-\varepsilon}$.

Summary

We haven't generated a summary for this paper yet.