Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Théorème d'Erdős-Kac dans un régime de grande déviation pour les translatés d'entiers ayant $k$ facteurs premiers (2410.11616v1)

Published 15 Oct 2024 in math.NT

Abstract: Let $x\geqslant 3$, for $1\leqslant n \leqslant x$ an integer, let $\omega(n)$ be its number of distinct prime factors. We show that, among the values $n\leqslant x$ with $\omega(n)=k$ where $1\leqslant k \ll \log_2 x$, $\omega(n-1)$ satisfies an Erd\H{o}s-Kac type theorem around $2\log_2 x$, so in large deviation regime, when weighted by $2{\omega(n-1)}$. This sharpens a result of Gorodetsky and Grimmelt with a quantitative and quasi-optimal error term. The proof of the main theorem is based on the characteristic function method and uses recent progress on Titchmarsh's divisor problem.

Summary

We haven't generated a summary for this paper yet.