Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introspective Perception: Learning to Predict Failures in Vision Systems (1607.08665v1)

Published 28 Jul 2016 in cs.RO, cs.AI, and cs.CV

Abstract: As robots aspire for long-term autonomous operations in complex dynamic environments, the ability to reliably take mission-critical decisions in ambiguous situations becomes critical. This motivates the need to build systems that have situational awareness to assess how qualified they are at that moment to make a decision. We call this self-evaluating capability as introspection. In this paper, we take a small step in this direction and propose a generic framework for introspective behavior in perception systems. Our goal is to learn a model to reliably predict failures in a given system, with respect to a task, directly from input sensor data. We present this in the context of vision-based autonomous MAV flight in outdoor natural environments, and show that it effectively handles uncertain situations.

Citations (76)

Summary

We haven't generated a summary for this paper yet.