Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VHT: Vertical Hoeffding Tree (1607.08325v1)

Published 28 Jul 2016 in cs.DC, cs.AI, and cs.DB

Abstract: IoT Big Data requires new machine learning methods able to scale to large size of data arriving at high speed. Decision trees are popular machine learning models since they are very effective, yet easy to interpret and visualize. In the literature, we can find distributed algorithms for learning decision trees, and also streaming algorithms, but not algorithms that combine both features. In this paper we present the Vertical Hoeffding Tree (VHT), the first distributed streaming algorithm for learning decision trees. It features a novel way of distributing decision trees via vertical parallelism. The algorithm is implemented on top of Apache SAMOA, a platform for mining distributed data streams, and thus able to run on real-world clusters. We run several experiments to study the accuracy and throughput performance of our new VHT algorithm, as well as its ability to scale while keeping its superior performance with respect to non-distributed decision trees.

Citations (48)

Summary

We haven't generated a summary for this paper yet.