Distinguishing number and distinguishing index of graphs from primary subgraphs
Abstract: The distinguishing number (index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (edge labeling) with $d$ labels that is preserved only by a trivial automorphism. Let $G$ be a connected graph constructed from pairwise disjoint connected graphs $G_1,\ldots ,G_k$ by selecting a vertex of $G_1$, a vertex of $G_2$, and identify these two vertices. Then continue in this manner inductively. We say that $G$ is obtained by point-attaching from $G_1, \ldots ,G_k$ and that $G_i$'s are the primary subgraphs of $G$. In this paper, we consider some particular cases of these graphs that are of importance in chemistry and study their distinguishing number and index.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.