Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distinguishing number and distinguishing index of graphs from primary subgraphs

Published 24 Jul 2016 in math.CO | (1607.07084v1)

Abstract: The distinguishing number (index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (edge labeling) with $d$ labels that is preserved only by a trivial automorphism. Let $G$ be a connected graph constructed from pairwise disjoint connected graphs $G_1,\ldots ,G_k$ by selecting a vertex of $G_1$, a vertex of $G_2$, and identify these two vertices. Then continue in this manner inductively. We say that $G$ is obtained by point-attaching from $G_1, \ldots ,G_k$ and that $G_i$'s are the primary subgraphs of $G$. In this paper, we consider some particular cases of these graphs that are of importance in chemistry and study their distinguishing number and index.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.