Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intrinsically Motivated Multimodal Structure Learning (1607.04376v1)

Published 15 Jul 2016 in cs.RO and cs.AI

Abstract: We present a long-term intrinsically motivated structure learning method for modeling transition dynamics during controlled interactions between a robot and semi-permanent structures in the world. In particular, we discuss how partially-observable state is represented using distributions over a Markovian state and build models of objects that predict how state distributions change in response to interactions with such objects. These structures serve as the basis for a number of possible future tasks defined as Markov Decision Processes (MDPs). The approach is an example of a structure learning technique applied to a multimodal affordance representation that yields a population of forward models for use in planning. We evaluate the approach using experiments on a bimanual mobile manipulator (uBot-6) that show the performance of model acquisition as the number of transition actions increases.

Citations (7)

Summary

We haven't generated a summary for this paper yet.