Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory Based Collaborative Filtering with Lucene (1607.00223v2)

Published 1 Jul 2016 in cs.IR

Abstract: Memory Based Collaborative Filtering is a widely used approach to provide recommendations. It exploits similarities between ratings across a population of users by forming a weighted vote to predict unobserved ratings. Bespoke solutions are frequently adopted to deal with the problem of high quality recommendations on large data sets. A disadvantage of this approach, however, is the loss of generality and flexibility of the general collaborative filtering systems. In this paper, we have developed a methodology that allows one to build a scalable and effective collaborative filtering system on top of a conventional full-text search engine such as Apache Lucene.

Citations (1)

Summary

We haven't generated a summary for this paper yet.