Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Product commuting maps with the $λ$-Aluthge transform (1606.06165v2)

Published 20 Jun 2016 in math.FA

Abstract: Let H and K be two Hilbert spaces and B(H) be the algebra of all bounded linear operators from H into itself. The main purpose of this paper is to obtain a characterization of bijective maps $\Phi$ : B(H) $\rightarrow$ B(K) satisfying the following condition $\Delta$ $\lambda$ ($\Phi$(A)$\Phi$(B)) = $\Phi$($\Delta$ $\lambda$ (AB)) f orall A, B $\in$ B(H), where $\Delta$ $\lambda$ (T) stands the $\lambda$-Aluthge transform of the operator T $\in$ B(H). More precisely, we prove that a bijective map $\Phi$ satisfies the above condition, if and only , if $\Phi$(A) = U AU * for all A $\in$ B(H), for some unitary operator U : H $\rightarrow$ K.

Summary

We haven't generated a summary for this paper yet.