Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Dynamic Model Averaging for Practitioners in Economics and Finance: The eDMA Package (1606.05656v3)

Published 17 Jun 2016 in stat.CO, cs.CE, and stat.AP

Abstract: Raftery, Karny, and Ettler (2010) introduce an estimation technique, which they refer to as Dynamic Model Averaging (DMA). In their application, DMA is used to predict the output strip thickness for a cold rolling mill, where the output is measured with a time delay. Recently, DMA has also shown to be useful in macroeconomic and financial applications. In this paper, we present the eDMA package for DMA estimation implemented in R. The eDMA package is especially suited for practitioners in economics and finance, where typically a large number of predictors are available. Our implementation is up to 133 times faster then a standard implementation using a single-core CPU. Thus, with the help of this package, practitioners are able to perform DMA on a standard PC without resorting to large clusters, which are not easily available to all researchers. We demonstrate the usefulness of this package through simulation experiments and an empirical application using quarterly U.S. inflation data.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.