Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of matrix trace using machine learning (1606.05560v1)

Published 16 Jun 2016 in stat.ML and math.NA

Abstract: We present a new trace estimator of the matrix whose explicit form is not given but its matrix multiplication to a vector is available. The form of the estimator is similar to the Hutchison stochastic trace estimator, but instead of the random noise vectors in Hutchison estimator, we use small number of probing vectors determined by machine learning. Evaluation of the quality of estimates and bias correction are discussed. An unbiased estimator is proposed for the calculation of the expectation value of a function of traces. In the numerical experiments with random matrices, it is shown that the precision of trace estimates with $\mathcal{O}(10)$ probing vectors determined by the machine learning is similar to that with $\mathcal{O}(10000)$ random noise vectors.

Citations (4)

Summary

We haven't generated a summary for this paper yet.