Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Holistic Features For Real-Time Crowd Behaviour Anomaly Detection (1606.05310v1)

Published 16 Jun 2016 in cs.CV

Abstract: This paper presents a new approach to crowd behaviour anomaly detection that uses a set of efficiently computed, easily interpretable, scene-level holistic features. This low-dimensional descriptor combines two features from the literature: crowd collectiveness [1] and crowd conflict [2], with two newly developed crowd features: mean motion speed and a new formulation of crowd density. Two different anomaly detection approaches are investigated using these features. When only normal training data is available we use a Gaussian Mixture Model (GMM) for outlier detection. When both normal and abnormal training data is available we use a Support Vector Machine (SVM) for binary classification. We evaluate on two crowd behaviour anomaly detection datasets, achieving both state-of-the-art classification performance on the violent-flows dataset [3] as well as better than real-time processing performance (40 frames per second).

Citations (55)

Summary

We haven't generated a summary for this paper yet.