Papers
Topics
Authors
Recent
2000 character limit reached

No Need to Pay Attention: Simple Recurrent Neural Networks Work! (for Answering "Simple" Questions)

Published 16 Jun 2016 in cs.CL | (1606.05029v2)

Abstract: First-order factoid question answering assumes that the question can be answered by a single fact in a knowledge base (KB). While this does not seem like a challenging task, many recent attempts that apply either complex linguistic reasoning or deep neural networks achieve 65%-76% accuracy on benchmark sets. Our approach formulates the task as two machine learning problems: detecting the entities in the question, and classifying the question as one of the relation types in the KB. We train a recurrent neural network to solve each problem. On the SimpleQuestions dataset, our approach yields substantial improvements over previously published results --- even neural networks based on much more complex architectures. The simplicity of our approach also has practical advantages, such as efficiency and modularity, that are valuable especially in an industry setting. In fact, we present a preliminary analysis of the performance of our model on real queries from Comcast's X1 entertainment platform with millions of users every day.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.