Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Generative Moment-Matching Networks (1606.04218v1)

Published 14 Jun 2016 in cs.LG

Abstract: Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment- matching networks (CGMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learning is performed by stochastic gradient descent with the gradient calculated by back-propagation. We evaluate CGMMN on a wide range of tasks, including predictive modeling, contextual generation, and Bayesian dark knowledge, which distills knowledge from a Bayesian model by learning a relatively small CGMMN student network. Our results demonstrate competitive performance in all the tasks.

Citations (57)

Summary

We haven't generated a summary for this paper yet.