Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient differentially private learning improves drug sensitivity prediction (1606.02109v2)

Published 7 Jun 2016 in stat.ML, cs.CR, cs.LG, and stat.ME

Abstract: Users of a personalised recommendation system face a dilemma: recommendations can be improved by learning from data, but only if the other users are willing to share their private information. Good personalised predictions are vitally important in precision medicine, but genomic information on which the predictions are based is also particularly sensitive, as it directly identifies the patients and hence cannot easily be anonymised. Differential privacy has emerged as a potentially promising solution: privacy is considered sufficient if presence of individual patients cannot be distinguished. However, differentially private learning with current methods does not improve predictions with feasible data sizes and dimensionalities. Here we show that useful predictors can be learned under powerful differential privacy guarantees, and even from moderately-sized data sets, by demonstrating significant improvements with a new robust private regression method in the accuracy of private drug sensitivity prediction. The method combines two key properties not present even in recent proposals, which can be generalised to other predictors: we prove it is asymptotically consistently and efficiently private, and demonstrate that it performs well on finite data. Good finite data performance is achieved by limiting the sharing of private information by decreasing the dimensionality and by projecting outliers to fit tighter bounds, therefore needing to add less noise for equal privacy. As already the simple-to-implement method shows promise on the challenging genomic data, we anticipate rapid progress towards practical applications in many fields, such as mobile sensing and social media, in addition to the badly needed precision medicine solutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Antti Honkela (52 papers)
  2. Mrinal Das (2 papers)
  3. Arttu Nieminen (4 papers)
  4. Onur Dikmen (9 papers)
  5. Samuel Kaski (164 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.