Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kronecker Determinantal Point Processes (1605.08374v1)

Published 26 May 2016 in cs.LG, cs.AI, and stat.ML

Abstract: Determinantal Point Processes (DPPs) are probabilistic models over all subsets a ground set of $N$ items. They have recently gained prominence in several applications that rely on "diverse" subsets. However, their applicability to large problems is still limited due to the $\mathcal O(N3)$ complexity of core tasks such as sampling and learning. We enable efficient sampling and learning for DPPs by introducing KronDPP, a DPP model whose kernel matrix decomposes as a tensor product of multiple smaller kernel matrices. This decomposition immediately enables fast exact sampling. But contrary to what one may expect, leveraging the Kronecker product structure for speeding up DPP learning turns out to be more difficult. We overcome this challenge, and derive batch and stochastic optimization algorithms for efficiently learning the parameters of a KronDPP.

Citations (31)

Summary

We haven't generated a summary for this paper yet.