Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Family of Trimmed Estimators for Robust High-dimensional Data Analysis (1605.08299v2)

Published 26 May 2016 in stat.ML

Abstract: We consider the problem of robustifying high-dimensional structured estimation. Robust techniques are key in real-world applications which often involve outliers and data corruption. We focus on trimmed versions of structurally regularized M-estimators in the high-dimensional setting, including the popular Least Trimmed Squares estimator, as well as analogous estimators for generalized linear models and graphical models, using possibly non-convex loss functions. We present a general analysis of their statistical convergence rates and consistency, and then take a closer look at the trimmed versions of the Lasso and Graphical Lasso estimators as special cases. On the optimization side, we show how to extend algorithms for M-estimators to fit trimmed variants and provide guarantees on their numerical convergence. The generality and competitive performance of high-dimensional trimmed estimators are illustrated numerically on both simulated and real-world genomics data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.